Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

V. Sridharan, ${ }^{\text {a }}$ P. Kalanidhi, ${ }^{\text {a }}$<br>K. Karthikeyan, ${ }^{\text {a }}$<br>S. Muthusubramanian, ${ }^{\text {a }}$<br>K. Anitha ${ }^{\text {b }}$ and R. K. Rajaram ${ }^{\text {b }}$ *<br>${ }^{\text {a }}$ Department of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ${ }^{\mathbf{b}}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail:
rkrsopmku@yahoo.co.in

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.045$
$w R$ factor $=0.140$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Diethyl 3-[2-methoxy-5-(1-methyl-1-phenylethyl)-phenyl]-2-phenyl-2,3,4,5-tetrahydroisoxazole-4,5dicarboxylate

The title compound, $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{6}$, has an envelope conformation for the central isoxazolidine ring, with one of the C atoms out of the plane of the other four atoms. The ester groups are cis to each other, while the C-aryl group is trans to the ester group in the isoxazolidine ring.

## Comment

Recently, a set of new 2,3,4,5-tetrasubstituted isoxazolidines has been synthesized in our laboratory and their structural features have been investigated by NMR and X-ray analysis (Sridharan, Muthusubramanian et al., 2004). Most of these isoxazolidines have all-trans stereochemistry around adjacent ring atoms. It has been planned to prepare analogous compounds with cis stereochemistry around atoms C8 and C15. With this view, 1,3-dipolar cycloaddition reactions of several $\alpha$-(5-substituted-2-methoxyphenyl)- $N$-phenylnitrones with diethyl maleate have been investigated (Sridharan, Kalanidhi \& Muthusubramanian, 2004). Diethyl maleate is a dipolarophile with considerable activity, though its reactivity has been limited when compared with its trans isomer (Padwa, 1984).

(I)

The title compound, (I), has been obtained as one of the products in the above process and its stereochemistry has been analyzed in this study. As expected, the substituents at C15 and C 8 of the isoxazolidine ring are cis to each other, while those at C16 and C15 are trans to each other, confirming that the reaction is a concerted one. The torsion angles around $\mathrm{C} 15-\mathrm{C} 8$ and around $\mathrm{C} 16-\mathrm{C} 15$ clearly show that the H atoms attached at C 15 and C 8 are closer to each other than those attached at C 16 and C 15 . The isoxazolidine ring adopts an envelope conformation, with atom C8 deviating by 0.2 (9) $\AA$ from the mean plane through the other four atoms. A mixture of $\alpha$-(5-(1-methyl-1-phenylethyl)-2-methoxyphenyl- $N$ phenylnitrone $(1.73 \mathrm{~g}, 0.005 \mathrm{~mol})$ and diethyl maleate $(0.86 \mathrm{~g}$, 0.005 mol ) was refluxed in toluene $(50 \mathrm{ml})$ for 6 h . After

Received 8 October 2004 Accepted 11 October 2004 Online 22 October 2004


Figure 1
The molecular structure of the title compound with the atom-numbering scheme and $50 \%$ probability displacement ellipsoids (ORTEPII; Johnson, 1976).


Figure 2
Packing diagram of the title molecule, viewed down the $b$ axis.
completion of the reaction, the solvent was evaporated under reduced pressure and pure product (I) was obtained by recrystallization from a petroleum ether-ethyl acetate mixture.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{31} \mathrm{H}_{3} \mathrm{NO}_{6} \\
& M_{r}=517.60 \\
& \text { Triclinic, } P \overline{1} \\
& a=10.8029(14) \AA \\
& b=10.941(9) \AA \\
& c=12.376(2) \AA \\
& \alpha=105.92(1)^{\circ} \\
& \beta=93.838(12)^{\circ} \\
& \gamma=94.804(9)^{\circ} \\
& V=1395.8(3) \AA^{\circ} \\
& Z=2 \\
& D_{x}=1.232 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

## $D_{m}=1.230 \mathrm{Mg} \mathrm{m}^{-3}$

$D_{m}$ measured by flotation in a mixture of carbon tetracholride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=9.8-14.0^{\circ}$
$\theta=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

## Data collection

Nonius MACH3 four-circle
diffractometer

$$
\omega-2 \theta \text { scans }
$$

Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.980, T_{\text {max }}=0.987$
5169 measured reflections
4725 independent reflections
2607 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.140$
$S=1.00$
4725 reflections
343 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.015 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-12 \rightarrow 10 \\
& k=-13 \rightarrow 12 \\
& l=-1 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min}
\end{aligned}
$$

intensity decay: none

$$
\begin{aligned}
& w=1 /[ \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.057 P)^{2} \\
&+0.4626 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

| C8-O1-N7-C33 | $-156.2(2)$ | O5-C14-C15-C16 | $3.7(4)$ |
| :--- | :---: | :--- | ---: |
| C8-O1-N7-C16 | $-28.4(2)$ | O4-C14-C15-C16 | $-175.12(19)$ |
| N7-O1-C8-C9 | $168.63(19)$ | O5-C14-C15-C8 | $-109.0(3)$ |
| N7-O1-C8-C15 | $43.6(2)$ | O4-C14-C15-C8 | $72.2(3)$ |
| O1-C8-C9-O2 | $-12.2(4)$ | C9-C8-C15-C14 | $-40.4(3)$ |
| C15-C8-C9-O2 | $103.7(3)$ | O1-C8-C15-C16 | $-41.4(2)$ |
| O1-C8-C9-O3 | $167.8(2)$ | C9-C8-C15-C16 | $-159.6(2)$ |
| C15-C8-C9-O3 | $-76.3(3)$ | O1-N7-C16-C15 | $1.3(2)$ |

The H atoms were placed in geometrically calculated positions and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ equal to $1.2 U_{\text {eq }}$ of the carrier atom ( $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ ).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Science and Technology, Government of India, for establishing the Single Crystal Diffractometer facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST program.

## References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst.. 36, 7-13.
Padwa, A. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vols. 1-2. New York: Wiley-Interscience.
Sridharan, V., Muthusubramanian, S., Sivasubramanian, S. \& Polborn, K. (2004). Tetrahedron, 60, 8881-8892.

Sridharan, V., Kalanidhi, P. \& Muthusubramanian, S. (2004). Unpublished results.

